Hybrid Particle Swarm Optimization Technique For Optimal Power Flow

نویسنده

  • N. Vijaya
چکیده

The Optimal Power Flow (OPF) plays an important role in power system operation and control due to depleting energy resources, and increasing power generation cost and ever growing demand for electric energy. As the size of the power system increases, load may be varying. The generators should share the total demand plus losses among themselves. The sharing should be based on the fuel cost of the total generation with respect to some security constraints. Conventional optimization methods that make use of derivatives and gradients are, in general, not able to locate or identify the global optimum. Heuristic algorithms such as genetic algorithms (GA) and evolutionary programming and PSO have been proposed for solving the OPF problem. Recently, a new evolutionary computation technique, called Adaptive Particle Swarm Optimization (APSO), has been proposed and introd uced. In this paper, a novel Adaptive PSO based approach is presented to solve Optimal Power Flow problem to satisfy objectives such as minimizing generation fuel cost and transmission line losses. A hybrid OPF is proposed by combining the positive aspects of Interior point method and APSO.The proposed algorithms are tested on IEEE 30 bus system using MATLAB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Swarm Algorithm for Multiobjective Optimal Power Flow Problem

Optimal power flow problem plays a major role in the operation and planning of power systems. It assists in acquiring the optimized solution for the optimal power flow problem. It consists of several objective functions and constraints. This paper solves the multiobjective optimal power flow problem using a new hybrid technique by combining the particle swarm optimization and ant colony optimiz...

متن کامل

Optimal power management of fuel cell hybrid vehicles

This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...

متن کامل

Solving Multi-objective Optimal Power Flow Using Modified GA and PSO Based on Hybrid Algorithm

The Optimal Power Flow (OPF) is one of the most important issues in the power systems. Due to the complexity and discontinuity of some parameters of power systems, the classic mathematical methods are not proper for this problem. In this paper, the objective function of OPF is formulated to minimize the power losses of transmission grid and the cost of energy generation and improve the voltage ...

متن کامل

Optimization of grid independent diesel-based hybrid system for power generation using improved particle swarm optimization algorithm

The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents modeling and optimization of a photovoltaic (PV)/wind/diesel system with batteries storage for electrification to an off-grid remote area located in Rafsanjan, Iran. For this location, different hybrid systems are studied and ...

متن کامل

Optimal allocation of multi-type FACTS Controllers by using hybrid PSO for Total Transfer Capability Enhancement

In this paper, the new hybrid particle swarm optimization (hybrid-PSO) based on particle swarm optimization (PSO), evolutionary programming (EP), and tabu search (TS) is developed. Hybrid-PSO is proposed to determine the optimal allocation of multi-type flexible AC transmission system (FACTS) controllers for simultaneously maximizing the power transfer capability of power transactions between g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014